Bromination Pattern of Hydroxylated Metabolites of BDE-47 Affects Their Potency to Release Calcium from Intracellular Stores in PC12 Cells

نویسندگان

  • Milou M.L. Dingemans
  • Harm J. Heusinkveld
  • Åke Bergman
  • Martin van den Berg
  • Remco H.S. Westerink
چکیده

BACKGROUND Brominated flame retardants, including the widely used polybrominated diphenyl ethers (PBDEs), have been detected in humans, raising concern about possible neurotoxicity. Recent research demonstrated that the hydroxylated metabolite 6-OH-BDE-47 increases neurotransmitter release by releasing calcium ions (Ca2+) from intracellular stores at much lower concentrations than its environmentally relevant parent congener BDE-47. Recently, several other hydroxylated BDE-47 metabolites, besides 6-OH-BDE-47, have been detected in human serum and cord blood. OBJECTIVE AND METHODS To investigate the neurotoxic potential of other environmentally relevant PBDEs and their metabolites, we examined and compared the acute effects of BDE-47, BDE-49, BDE-99, BDE-100, BDE-153, and several metabolites of BDE-47-6-OH-BDE-47 (and its methoxylated analog 6-MeO-BDE-47), 6 -OH-BDE-49, 5-OH-BDE-47, 3-OH-BDE-47, and 4 -OH-BDE-49--on intracellular Ca2+ concentration ([Ca2+]i), measured using the Ca2+-responsive dye Fura-2 in neuroendocrine pheochromocytoma (PC12) cells. RESULTS In contrast to the parent PBDEs and 6-MeO-BDE-47, all hydroxylated metabolites induced Ca2+ release from intracellular stores, although with different lowest observed effect concentrations (LOECs). The major intracellular Ca2+ sources were either endoplasmic reticulum (ER; 5-OH-BDE-47 and 6 -OH-BDE-49) or both ER and mitochondria (6-OH-BDE-47, 3-OH-BDE-47, and 4 -OH-BDE-49). When investigating fluctuations in [Ca2+]i, which is a more subtle end point, we observed lower LOECs for 6-OH-BDE-47 and 4 -OH-BDE-49, as well as for BDE-47. CONCLUSIONS The present findings demonstrate that hydroxylated metabolites of BDE-47 cause disturbance of the [Ca2+]i. Importantly, shielding of the OH group on both sides with bromine atoms and/or the ether bond to the other phenyl ring lowers the potency of hydroxylated PBDE metabolites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydroxylation Increases the Neurotoxic Potential of BDE-47 to Affect Exocytosis and Calcium Homeostasis in PC12 Cells

BACKGROUND Oxidative metabolism, resulting in the formation of hydroxylated polybrominated diphenyl ether (PBDE) metabolites, may enhance the neurotoxic potential of brominated flame retardants. OBJECTIVE Our objective was to investigate the effects of a hydroxylated metabolite of 2,2',4,4'-tetra-bromodiphenyl ether (BDE-47; 6-OH-BDE-47) on changes in the intracellular Ca2+ concentration ([Ca...

متن کامل

Calcium-related processes involved in the inhibition of depolarization-evoked calcium increase by hydroxylated PBDEs in PC12 cells.

In vitro studies indicated that hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have an increased toxic potential compared to their parent congeners. An example is the OH-PBDE-induced increase of basal intracellular Ca(2+) concentration ([Ca(2+)](i)) by release of Ca(2+) from endoplasmic reticulum (ER) and mitochondria and/or influx of extracellular Ca(2+). ER and mitochondria regulate C...

متن کامل

Hydroxylated Metabolites of Polybrominated Diphenyl Ethers in Human Blood Samples from the United States

BACKGROUND A previous study from our laboratory showed that polybrominated diphenyl ethers (PBDEs) were metabolized to hydroxylated PBDEs (HO-PBDEs) in mice and that para-HO-PBDEs were the most abundant and, potentially, the most toxic metabolites. OBJECTIVE The goal of this study was to determine the concentrations of HO-PBDEs in blood from pregnant women, who had not been intentionally or o...

متن کامل

Neonatal Exposure to Brominated Flame Retardant BDE-47 Reduces Long-Term Potentiation and Postsynaptic Protein Levels in Mouse Hippocampus

BACKGROUND Increasing environmental levels of brominated flame retardants raise concern about possible adverse effects, particularly through early developmental exposure. OBJECTIVE The objective of this research was to investigate neurodevelopmental mechanisms underlying previously observed behavioral impairments observed after neonatal exposure to polybrominated diphenyl ethers (PBDEs). ME...

متن کامل

Para- and Ortho-Substitutions Are Key Determinants of Polybrominated Diphenyl Ether Activity toward Ryanodine Receptors and Neurotoxicity

BACKGROUND Polybrominated diphenyl ethers (PBDEs) are widely used flame retardants that bioaccumulate in human tissues. Their neurotoxicity involves dysregulation of calcium ion (Ca(2+))signaling; however, specific mechanisms have yet to be defined. OBJECTIVE We aimed to define the structure-activity relationship (SAR) for PBDEs and their metabolites toward ryanodine receptors type 1 (RyR1) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2010